Блог о здоровом образе жизни. Грыжа позвоночника. Остеохондроз. Качество жизни. Красота и здоровье

Блог о здоровом образе жизни. Грыжа позвоночника. Остеохондроз. Качество жизни. Красота и здоровье

» » Геометрические изомеры примеры. Что такое геометрический изомер? Краткая история изомерии

Геометрические изомеры примеры. Что такое геометрический изомер? Краткая история изомерии

Цис-транс -изомерия или геометрическая изомерия - один из видов стереоизомерии : заключается в возможности расположения заместителей по одну или по разные стороны плоскости двойной связи или неароматического цикла. Все геометрические изомеры относятся к диастереомерам , так как не являются зеркальными отражениями друг друга. Цис - и транс -изомеры встречаются как среди органических соединений, так и среди неорганических. Понятия цис и транс не используются в случае конформеров , двух геометрических форм, легко переходящих друг в друга, вместо них используются обозначения «син» и «анти».

Обозначения «цис » и «транс » произошли из латыни, в переводе с этого языка цис означает «на одной стороне» , а транс - «на другой стороне» или «напротив». Термин «геометрическая изомерия» согласно ИЮПАК считается устаревшим синонимом цис -транс -изомерии .

Следует помнить, что цис-транс -номенклатура описывает относительное расположение заместителей, и не следует путать её с E,Z -номенклатурой, которая даёт абсолютное стереохимическое описание и применяется только к алкенам .

Органическая химия

Цис-транс -изомерией проявляют также и алициклические соединения , у которых заместители могут располагаться по одну или по разные стороны плоскости кольца. В качестве примера можно привести 1,2-дихлорциклогексан:

транс -1,2-дихлорциклогексан цис -1,2-дихлорциклогексан

Различие в физических свойствах

цис -2-пентен транс -2-пентен
цис -1,2-дихлорэтилен транс -1,2-дихлорэтилен
цис -бутендиовая кислота
(малеиновая кислота)
транс -бутендиовая кислота
(фумаровая кислота)


Олеиновая кислота Элаидиновая кислота

Отличия могут быть незначительными, как в случае температуры кипения алкенов с прямой цепью, таких как 2-пентен , цис -изомер которого кипит при 37 °C, а транс -изомер - при 36 °C . Разница между цис - и транс - становится ещё больше, если в молекуле есть поляризованные связи, как в 1,2-дихлорэтилене . Цис -изомер в данном случае кипит при 60,3 °C, а вот транс -изомер закипает при 47,5 °C . В случае цис -изомера эффект от двух полярных связей C-Cl складываются, образуя сильный молекулярный диполь , что даёт начало сильным межмолекулярным взаимодействиям (силам Кеезома), которые добавляются к дисперсионным силам и приводит к увеличению точки кипения. В транс -изомере, напротив, подобного не происходит, поскольку два момента C−Cl связей расположены друг напротив друга и аннулируют друг друга, не создавая дополнительный дипольный момент (хотя их квадрупольный момент совсем не равен нулю).

Два геометрических изомера бутендиовой кислоты настолько сильно отличаются по своим свойствам и реакционной способности, что даже получили разные названия: цис -изомер называется малеиновая кислота , а транс -изомер - фумаровая кислота . Ключевое свойство, определяющее относительную температуру кипения, - полярность молекулы, так как она усиливает межмолекулярные взаимодействия, тем самым повышая температуру кипения. В такой же манере симметрия определяет температуру плавления, поскольку симметричные молекулы лучше упаковываются в твёрдом состоянии, даже если полярность молекулы не меняется. Один из примеров такой зависимости - олеиновая и элаидиновая кислоты; олеиновая кислота, цис -изомер, имеет температуру плавления в 13,4 °C, и при комнатной температуре становится жидкостью, в то время как транс -изомер, элаидиновая кислота, обладает более высокой температурой плавления в 43 °C, поскольку более прямой транс -изомер имеет более плотную упаковку и остаётся твёрдым при комнатной температуре.

Цис-транс -изомеры дикарбоновых кислот различаются и по кислотности: малеиновая кислота (цис ) является значительно более сильной кислотой, чем фумаровая (транс ). Так, первая константа диссоциации для фумаровой кислоты pК a1 = 3,03, а для малеиновой кислоты pK a1 = 1,9. Наоборот, константа диссоциации второй карбоксильной группы для фумаровой кислоты больше, чем для малеиновой, а именно: для фумаровой кислоты pK a2 = 4,44, а для малеиновой кислоты pK a2 = 6,07. Благодаря пространственной близости карбоксильных групп в цис -форме увеличивается склонность водорода к ионизации, поэтому первая константа малеиновой кислоты оказывается больше. Однако второму протону труднее преодолеть притяжение двух сближенных карбоксильных групп в цис -изомере, поэтому вторая константа диссоциации малеиновой кислоты меньше, чем у фумаровой . Аналогичный принцип действует и для алициклических дикарбоновых кислот, однако с увеличением размера кольца следует также учитывать влияние неплоской формы цикла .

Вицинальная константа ядерной спин-спиновой связи (3 J HH), измеряемая при помощи ЯМР-спектроскопии , больше для транс -изомеров (диапазон: 12-18 Гц; в среднем: 15 Гц), чем для цис -изомеров (диапазон: 0-12 Гц; в среднем: 8 Гц) .

Стабильность

Как правило для ациклических систем транс цис . Причина этого обычно заключается в усилении нежелательных стерических взаимодействиях близко расположенных заместителей в цис -изомере. По этой же причине удельная теплота сгорания транс -изомеров ниже чем у цис , что указывает на большую термодинамическую стабильность . Исключением из этого правила являются 1,2-дифторэтилен, 1,2-дифтордиазен (FN=NF), 1-бромпропен-1 и несколько других галоген- и кислород-замещённых этиленов . В данном случае цис -изомер оказывается более стабильным, чем транс -изомер поскольку между такими заместителями преобладают не силы отталкивания, а силы притяжения (типа сил Лондона). К тому же благодаря относительно небольшому объёму заместителей не возникает стерических затруднений . Из 1,2-дигалогенэтиленов только у 1,2-дийодэтилена транс-изомер стабильнее, чем цис -изомер, поскольку из-за большого радиуса атомы йода испытывают сильное пространственное взаимодействие, если находятся по одну сторону двойной связи .

Взаимопревращение изомеров

Геометрические изомеры, различие которых связано с положением заместителей вокруг двойной связи, отличаются от стереоизомерных форм иного типа - конформеров . Раздельное существование цис - и транс -изомеров в сущности возможно лишь благодаря высокому энергетическому барьеру вращения вокруг двойной связи, что делает возможным раздельное существование цис - и транс -изомеров, в то время как конформеры существуют только в виде равновесной смеси. Величина барьера вращения вокруг двойной связи в простых алкенах составляет 250-270 кДж/моль. Однако, если поставить с одной стороны сильные доноры электронов (-SR), а с другой - группы, сильные акцепторы электронов (-CN, -COC 6 H 5), поляризовав таким образом двойную связь, то это приведёт к существенному снижению барьера вращения. Барьер вращения вокруг поляризованной таким образом связи может быть снижен до 60-100 кДж/моль. Низкие энергетические барьеры, когда энергетическая разница между цис-транс -изомерами и конформерами сглаживается, обнаружены для аминопроизводных ацетоуксусного эфира и енаминокетонов. Показано, что в таких системах положение равновесия зависит от природы растворителя. Так, енаминокетоны в неполярных растворителях на 100 % существуют в цис -форме, стабилизированной внутренней водородной связью, а в полярных растворителей появляется до 50 % транс -формы .

E,Z -номенклатура

Система обозначений цис -транс хорошо применима только для именования изомерных алкенов с двумя разными видами заместителей при двойной связи, в сложных молекулах такая номенклатура становится слишком неопределённой. В этих случаях используют разработанную ИЮПАК E ,Z -систему обозначений, которая однозначно определяет название соединений для всех возможных случаев, а потому особенно полезна для именования три- и тетразамещённых алкенов. Такая система позволяет избежать путаницы касательно того какие группы следует считать цис - или транс - по отношению к друг другу.

Если две старшие группы расположены по одну сторону двойной связи, то есть находятся в цис -положении друг к другу, то такое вещество называют Z -изомером (от нем. zusammen - вместе). Когда же старшие группы расположены по разные стороны двойной связи (в транс -ориентации), то такой изомер называют E -изомером (от нем. entgegen - напротив). Порядок старшинства групп и атомов определяется по правилам Кана - Ингольда - Прелога . Для каждого из двух атомов в двойной связи необходимо определить старшинство каждого заместителя. Если оба старших заместителя расположены по одну сторону от плоскости π-связи , то такую конфигурацию обозначают символом Z , если же эти группы находятся по разные стороны от плоскости π-связи, то конфигурацию обозначают символом E .

Следует отметить, что цис /транс и E ,Z -номенклатуры опираются на сравнение разных заместителей алкенов, поэтому Z -изомер не всегда соответствует цис -изомеру, а E -изомер - транс -изомеру. Например, транс -2-хлорбутен-2 (две метильных группы C1 и C4, на главной цепи бутена-2а находятся в транс -ориентации) является (Z )-2-хлорбутеном-2 (хлор старше, чем метил, который в свою очередь старше водорода, поэтому хлор и C4-метил рассматриваются как расположенные вместе).

В неорганической химии

Цис транс -изомерия встречается и в неорганических соединениях, в первую очередь в диазенах и комплексных соединениях .

Диазены

Диазены (и схожие с ними дифосфены) проявляют цис-транс- изомерию. Как и в случае органических соединений, цис -изомер более реакционноспособен, только он способен восстанавливать алкены и алкины до алканов . Транс -изомер, сближаясь с алкеном, не может выстроить свои атомы водорода в линию для эффективного восстановления алкена, а цис -изомер благодаря соответствующей форме успешно справляется с этой задачей.

транс -диазен цис -диазен

Комплексные соединения

Неорганические координационные соединения с октаэдрической или плоской квадратной геометрией также подразделяются на цис -изомеры, в которых одинаковые лиганды расположены рядом, и транс -изомеры, в которых лиганды отстоят друг от друга.

Например, два геометрических изомера плоского квадратного строения существуют для Pt(NH 3) 2 Cl 2 , феномен, который Альфред Вернер объяснил в 1893 году. Цис -изомер с полным названием цис -дихлородиамминплатина(II) обладает противоопухолевой активностью, что было продемонстрировано Барнеттом Розенбергом в 1969 году. Сейчас это вещество известно в химиотерапии под коротким названием цисплатин . Транс -изомер (трансплатин), напротив, не обладает какой-либо лекарственной активностью. Каждый из этих изомеров можно синтезировать, опираясь на транс-эффект , что позволяет получить преимущественно нужный изомер.

цис - + и транс - +

Для октаэдрических комплексов с формулой MX 4 Y 2 тоже существуют два изомера. (Здесь M - атом металла, а X и Y - лиганды разных видов.) В цис -изомере два лиганда Y примыкают друг к другу под углом 90°, как и показано для атомов хлора в цис - + на левой картинке. В транс -изомере, показанном справа, два атома хлора расположены на противоположных концах диагонали, проходящей через центральный атом кобальта.

Схожий тип изомерии октаэдральных комплексов состава MX 3 Y 3 - это гран-ос -изомерия, или гранево-осевая изомерия, когда некоторое количество лигандов оказываются в цис - или транс -положении друг к другу. В гран -изомерах лиганды одного типа занимают вершины треугольной грани октаэдра, а в ос -изомерах эти же лиганды находятся в трёх соседних позициях так, что два лиганда оказываются по разные стороны от центрального атома и на одной оси с ним

Геометрические изомеры возникают, если свободное враще­ние атомов в молекуле ограничено вследствие наличия двойной связи. Примером такой пары изомеров могут служить малеино­вая (12.23) и фумаровая (12.24) кислоты (цис- и транс- соот­ветственно).

По химическому строению геометрические изоме­ры очень похожи, но они не являются зеркальными отображе­ниями друг друга и не вращают плоскость поляризации света. Как правило, цис- и транс-изомеры значительно отличаются по физическим свойствам. Например, малеиновая кислота (12.23) плавится при 130 °С, величина ее рКа 1,9, она очень хорошо растворима в холодной воде (79 г на 100 мл); константы ее гео­метрического изомера - фумаровой кислоты (12.24) соответ­ственно 287 °С, 3,0 и 0,7 г на 100 мл. Неудивительно, что гео­метрические изомеры обладают разными биологическими свой­ствами и поэтому очень важно при изучении хи­мической формулы нового соединения учитывать все возможно­сти существования изомерии такого типа.

Цис- и транс-изомеры можно легко разделить кристаллиза­цией или хроматографически. Общего метода для превращения одного изомера в другой не существует, однако при нагревании, как правило, образуется наиболее стабильный изомер, а под действием света - менее стабильный. Зрение человека зависит от превращения 11-цис-изомера ретиналя в 11-транс-форму под действием света. Как только возбуждающий луч света исчезает,

этот каротиноидный пигмент снова переходит в цис-форму, пре­рывая тем сй^ым идущий к мозгу импульс .

Цис- и транс-изомеры существуют и у плоского циклопента­нового кольца, представляющего собой как бы большую двой­ную связь. Хотя циклогексановое кольцо вообще не плоское, оно тем не менее достаточно плоское для образования цис- и транс­изомеров. Так, существуют и доступны как цис- (12.25), так и транс- (12.26) формы диаминоциклогексана. Одна и та же моле­кула может образовывать и геометрические, и оптические изо­меры. Например, транс-изомер (12.26) может быть разделен на (S,S) (12.27) и (R,R) (12.28) хиральные изомеры. Однако цис-изомер на хиральные формы разделен быть не может, так как в нем существует плоскость симметрии. У бензольного кольца нет геометрических изомеров, так как у каждого атома углерода кольца только один заместитель.

Стереоизомеры 1,2-диаминоцинлогенсана

Иногда бывает трудно выбрать два из четырех заместителей при двойной связи для определения цис- или транс-конфигура­ции. Правило последовательности предписывает выбирать заме­стителей с наиболее тяжелыми атомами, при этом цис-форма обозначается буквой Z (от немецкого слова zusammen), а транс­форма- буквой Е (entgegen). Иногда в названиях соединений, в которых геометрическая изомерия может проявиться много­кратно, заместитель, имеющий самый маленький номер (по правилу нумерации), обозначают буквой г, а обозначения с-(цис) и t-(транс) перед другими заместителями показывают их положение по отношению к г-заместителю.

Аналогично индол-3-илуксусной кислоте (4.82), стимулирую­щей рост растительных клеток, могут действовать и другие кар­боновые кислоты, карбоксильная группа которых находится под углом к плоскости ароматического кольца. Геометрическая изо­мерия ограничивает возможность такого расположения двух за­местителей, поэтому из коричных кислот активен только цис­изомер . У 2-фенилциклопропан-1- карбоновой и 1,2,3,4-тетрагидронафталиден-1-уксусной кислот также активны только цис-изомеры . На молекулярных моделях видно, что кольцо и кар­боксильная группа в транс-изомере (неактивном) этих веществ лежат в одной плоскости, в то время как в цис-форме (актив­ной) они некопланарны. Впервые указал на эту связь между

некопланарностью и стимулирующей рост активностью Veidstra. Некопланарность может возникнуть и вследствие стерических препятствий. Так, бензойная кислота имеет плоскую форму и не активна, а 2,6-дихлорбензойная и 8-метил-1-нафтойная кислоты непланарны и биологически активны .

В аналогах ауксинов карбоксильная группа может быть за­менена и на другие электроноакцепторные группы (-CN, -NO 2 , -SO3H), при этом биологическая активность лишь не­значительно уменьшается. О связи между структурой и действи­ем в этой серии см. Koepfli, Thimann, Went (1938) и Veidstra (1963).

Геометрическая изомерия стероидов заслуживает специаль­ного рассмотрения. На формуле (12.29) приведена общая струк­тура этой группы природных насыщенных соединений (показана нумерация атомов углерода и буквенные обозначения четырех циклов). В природных стероидах кольца В и С находятся в транс-сочленении, причем оба они закреплены в конформации кресла. В сердечных гликозидах сочленение циклов С и D име­ет цис-конфигурацию, но в гормонах животных, стеринах и желч­ных кислотах - транс-сочленение. У большинства биологически активных стероидов кольца А и В находятся в транс-сочлене­нии («5а»-ряд, называвшийся ранее «алло»). Каждое из колец в молекуле стероидов образует складки, что хорошо видно на боковой проекции формулы (12.30).

Обозначение «5а» говорит о том, что атом водорода в поло­жении 5 находится ниже общей плоскости колец. Все замести­тели, расположенные ниже этой плоскости, обозначаются симво­лом «а», а выше - символом «р». а-Заместители обозначают пунктирными линиями, а ^-заместители - сплошными. Символы а- и ^-используют и для других полициклических соединений, например, тритерпенов и алкалоидов. Сложность строения этих соединений затрудняет использование R- и S-номенклатуры.

Как правило, у млекопитающих высокая биологическая ак­тивность стероидных соединений связана с отсутствием а-заме- стителей в положениях 1, 9, 11-13, 17 и отсутствием р-замести- телей в положениях 4-8, 14, 15. Боковая проекция молекулы гидрокортизона иллюстрирует это правило . Первой стадией в биологическом действии сте­роидных гормонов является их влияние на специфический транс­порт белков (разд. 2.4). Предполагают, что с белками стероиды взаимодействуют плоской нижней стороной (a-поверхность) мо­лекулы.

Различные стероиды отличаются друг от друга в основном заместителями R 1 , R 2 и R 3 (12.29), но иногда и степенью нена- сыщенности или наличием других заместителей вне колец. Для того чтобы стероид обладал прогестиновой, андрогенной и кор- тикоидной активностью, как правило, необходимо наличие цик­логексеноновой структуры кольца А. Для проявления активно­сти кортизонового типа необходимы атомы кислорода в положе­ниях 3, 11 и 17 и характеристичная группа -СО-СН 2 ОН в по­ложении 17. Андрогенная и кортикоидная активность в большей степени зависит от этих деталей строения молекулы, однако прогестиновая активность сохраняется, если ацетильная группа в положении 17 находится в a-конфигурации, не встречающейся в природных соединениях, а замена метильной группы в поло­жении 18 на этильную приводит даже к усилению этой актив­ности (пероральный контрацептив норгестрел).

Из всех стероидных гормонов наименее жесткие требования к структуре предъявляют соединения, обладающие эстрогенной активностью. При условии ароматизации кольца А и наличии кислой гидроксильной группы в положении 3 строение осталь­ной части молекулы имеет второстепенное значение. В 1938 г. появились простые высокоэффективные бензольные аналоги стероидных эстрогенов. Хотя считалось, что их молекулы по форме похожи на молекулы стероидов, в действительности меж­ду ними не так уж много общего. По данным рентгенострук­турного анализа молекула диэтилстильбэстрола (12.31) имеет транс-конфигурацию, искаженную из-за стерических затрудне­ний, создаваемых метиленовыми фрагментами двух этильных групп. Поэтому два бензольных кольца образуют с этиленовым фрагментом двугранный угол 63°, что делает форму молекулы совершенно не похожей на стероидную. Однако в этих молеку­лах примерно одинаково расстояние между атомами кислорода: 1,21 нм в диэтилстильбэстроле и от 1,07 до 1,11 нм в стероид­ных эстрогенах, но все эти молекулы слишком жесткие и поэто­му не способны взаимодействовать с одним и тем же рецепто­ром, в котором фиксировано расстояние между точками связы­вания. Известно, что для проявления эстрогенной активности необходимо образование двух водородных связей рецептора с атомами кислорода лиганда, следовательно, рецептор должен обладать определенной гибкостью . Oki, Urushibara (1952) впервые отметили, что действие диэтилстильбэстрола связано и с толщиной его молекулы, кото­рая составляет 0,45 нм и равна толщине молекул стероидных эстрогенов .

Диэтилстильбэстрол 3,4-ди (4-гидроксифенил) гекс-3-ен

(12.31), эффективный и недорогой заменитель основного женс­кого гормона эстрадиола (12.32), появился в 1938 г. . Этот синтетический лекарственный препарат, отли­чающийся от природного гормона высокой эффективностью при пероральном применении и большей длительностью действия, стал основным препаратом в эндокринной терапии. Некоторое недоверие к этому препарату возникло на основании двух фак­торов: во-первых, его неограниченно применяли для увеличе­ния веса сельскохозяйственных животных, а во-вторых, были отмечены случаи заболевания раком у женщин, матери кото­рых принимали его во время беременности. Несмотря на это, диэтилстильбэстрол продолжают широко применять и считают безопасным средством; его не назначают только в первые три месяца беременности (что, кстати, в равной степени относится и к природному гормону). О применении его фосфата для лече­ния рака предстательной железы см. разд. 4.2. Сходными эст­рогенными свойствами обладает и дигидропроизводное диэтил- стильбэстрола-синэстрол (12.33, а) (конфигурация 3R, 4S). С эстрогенсвязывающим белком (разд. 2.4) он соединяется сильнее, чем сам диэтилстильбэстрол, а еще сильнее взаимодейству­ет с этим белком его низший гомолог-норгексэстрол (12.33, б) .

Сердечные гликозиды рассматриваются в разд. 14.1. Подроб­ное изложение химии и стереохимии стероидов см. Shoppee (1964), биохимии и фармокологии - Briggs, Christie (1977).

Геометрическая изомерия 4-аминокротоновой кислоты, кото­рая помогла определить активную конформацию нейромедиа­тора гамма-аминомасляной кислоты, рассматривается в разд. 12.7.

К конфигурационной относится оптическая и геометрическая изомерия.

ОПТИЧЕСКАЯ ИЗОМЕРИЯ

В 1815 г. Ж. Био открыл существование оптической активности для органических соединений. Было установлено, что некоторые органические соединения имеют способность вращать плоскость поляризации поляризованного света. Вещества, которые обладают такой способностью, называются оптически активными.

Если луч обычного света, в котором, как известно, электромагнитные колебания распостраняются в разных плоскостях, перпендикулярных к направлению его распространения, пропустить через призму Николя, то выходящий свет будет плоскополяризованным, В таком луче электромагнитные колебания совершаются только в одной плоскости. Эту плоскость называют плоскостью поляризации (рис. 3.2).

При прохождении поляризованного луча света через оптически активное вещество плоскость поляризации поворачивается на определенный угол α вправо или влево. Если вещество отклоняет плоскость поляризации вправо (при наблюдении навстречу лучу), его называют правовращающим, если влево – левоврашаюшим. Правое вращение обозначают знаком (+), левое – знаком (-).

Рис. 3.2. Схема образования поляризованного света и врашения плоскости поляризаиии оптически активным веществом

Оптическую активность измеряют с помощью приборов, называемых поляриметрами.

Явление оптической активности распространено среди органических веществ, особенно среди природных (гидрокси- и аминокислот, белков, углеводов, алкалоидов).

Оптическая активность большинства органических соединений обусловлена их строением.

Одной из причин возникновения оптической активности органических молекул является наличие в их структуре sp 3 -гибридизированного атома углерода, связанного с четырьмя разными заместителями. Такой атом углерода называется хиральным или асимметрическим. Часто для него применяют более общее название – хиральный центр. В структурных формулах асимметрический атом углерода принято обозначать звездочкой – С*:

Соединения, содержащие один асимметрический атом углерода, существуют в виде двух изомеров, относящихся друг к другу как предмет к своему зеркальному отображению. Такие изомеры называются энантиомерами .

Рис. 3.3. Модели энантиомерных молекул бромиодхлорметана

Для изображения пространственного строения оптических изомеров на плоскости могут быть использованы стереохимические формулы. Например, энантиомеры бутанола-2, изображенные с помощью стереохимических формул, имеют следующий вид:

Однако стереохимические формулы не всегда удобны для описания пространственного строения молекул. Поэтому чаше всего оптические изомеры изображают на плоскости с помошью проекционных формул Фишера. Например, так выглядят энантиомеры 2-бромбутана, изображаемые с помошью проекции Фишера.

Энантиомеры очень похожи друг на друга, но тем не менее не тождественны. Они имеют одинаковый состав и последовательность связывания атомов в молекуле, но отличаются друг от друга относительным расположением их в пространстве, т. е, конфигурацией. В том, что эти молекулы разные, легко убедиться при попытке наложения их моделей друг на друга.

Свойство молекул не совмещаться со своим зеркальным изображением называется хиральностью (от греч, cheir– рука), а также молекулы называют хиральными. Наглядным примером могут служить левая и правая руки, которые являются зеркальным отражением друг друга, но вместе с тем их нельзя совместить. Молекулы, которые совместимы со своим зеркальным изображением называют ахиральными.

Хиральность молекул является обязательным условием для проявления веществом оптической активности.

Как установить является ли молекула хиральной? Хиральность молекулы можно легко обнаружить путем построения модели молекулы и модели ее зеркального изображения с последующим их совмещением. Если модели не совмещаются – молекула хиральна, если совмещаются – ахиральна. Такой же вывод можно сделать и на основе стереохимических формул молекул по наличию ил и отсутствию элементов симметрии, так как причиной оптической активности органических соединений является их асимметрическое строение. Поскольку молекула представляет собой трехмерное образование, ее строение можно рассматривать сточки зрения симметрии геометрических фигур. Основным элементами симметрии являются плоскость, центр и ось симметрии. Если в молекуле отсутствует плоскость симметрии, то такая молекула хиральна.

Энантиомеры обладают одинаковыми физическими и химическими свойствами (температура кипения, температура плавления, растворимость, электропроводность и другие константы будут одни и те же), вращают плоскость поляризации поляризованного луча на один и тот же по величине угол, но имеются и различия.

Энантиомеры отличаются знаком вращения, один вращает плоскость поляризации поляризованного луча влево, другой – вправо; они с различной скоростью реагируют с другими хиральными соединениями, а также имеется различие в физиологическом действии. Например, лекарственный препарат левомицин – антибиотик широкого спектра действия. Если его эффективность принять за 100, то правовращающая форма составит только 2 % от эффективности левовращающсй формы.

Если молекула имеет один асимметрический атом, то она существует в виде двух изомеров, если же молекула имеет несколько асимметрических атомов углерода, то число возможных изомеров увеличивается. Число оптических изомеров определяют по формуле:

где N – число изомеров; п – число асимметрических атомов углерода.

Так при наличии в молекуле двух асимметрических атомов углерода число изомеров равно 2 2 = 4, трех – 2 3 = 8, четырех – 2 4 = 16 и т. д.

Например, бромяблочная кислота, содержащая два асимметрических атома углерода, существует в виде четырех стереоизомеров (I–IV).

Стереомеры I и II, а также III и IVотносятся друг к другу как предмет и его зеркальное изображение и являются энантиомерами.

Стереоизомеры 1 и III, 1 и IV, а также II и HI, Н и IV не являются зеркальными отображениями друг друга, они отличаются конфигурацией при одном из асимметрических атомов углерода. Такие стереоизомеры называют диастереомерами. В отличие от энантиомеров диастереомеры имеют различные физические и химические свойства.

Для соединений, содержащих два хиральных атома углерода, связанных с одинаковыми заместителями, общее число стереоизомеров уменьшается до трех. Например, винная кислота должна существовать в виде четырех стереоизомеров (2 2 = 4), а известно лишь три. Это обусловлено появлением у одного из стереоизомеров такого элемента, как плоскость симметрии.

Стереомеры 1 и II являются энантиомерами. Стереоизомер III (мезо-форма) является оптически неактивным. Молекула мезовинной кислоты ахиральна. Каждый энантиомер винной кислоты по отношению к мезо-форме является диастереомером.

Номенклатура оптических изомеров

В номенклатуре наряду с названием соединения указывают также конфигурацию и направление вращения плоскости поляризованного света. Последнее обозначают знаком (+) для правовращающего изомера или знаком (-) для левовращающего изомера.

Для обозначения конфигурации оптических изомеров существуют D,L- и R,S -стереохимические системы.

D,L-система обозначения конфигурации . Установить абсолютную конфигурацию молекул оказалось для химиков довод ьно сложной задачей. Впервые это удалось лишь в 1951 г. методом рентгеноструктур-ного анализа. До этого времени конфигурацию оптических изомеров устанавливали методом сравнения со специально выбранным стандартным веществом. Такая конфигурация получила название относительной. В 1906 г. русским ученым М.А. Розановым в качестве стандарта для установления относительной конфигурации был предложен глицериновый альдегид,

Для правовращающего изомера выбрали формулу Фишера, в которой гидроксильная группа у хирального атома углерода находится справа, а для левоврашаюшего – слева. Конфигурация правовращающего изомера обозначается буквой D а левоврашаюшего – L.

С использованием в качестве эталона сравнения глицеринового альдегида была разработана D,L-система стереохимической классификации хиральных соединений, т. е. отнесения соединений соответственно к D- или L-стереохимическому ряду

D,L-система главным образом применяется в ряду многоатомных спиртов, гидрокси-, аминокислот и углеводов:

Для соединений с несколькими асимметрическими атомами углерода, таких как α-пироксикислоты, α-аминокислоты, винные кислоты, конфигурацию условно определяют по верхнему асимметрическому атому углерода (по гндроксикислотному ключу), в то время как в молекуле углеводов конфигурацию устанавливают (условно) по нижнему асимметрическому атому углерода.

R,S-система обозначения конфигурации. D,L- система оказалась практически неприемлемой для соединений мало похожих на глицериновый альдегид. Поэтому R Каном, К. Ингольдом и В. Прелогом была предложена R,S- система обозначения абсолютной конфигурации оптических изомеров. R,S- система построена на определении старшинства заместителей у хирального центра.

Старшинство заместителей определяется величинами атомных номеров элементов. Чем больше атомный номер, тем старше заместитель. Например» в молекуле бромйодхлорметана старшинство заместителей уменьшается в ряду:

После установления старшинства заместителей модель молекулы ориентируют так, чтобы заместитель с наименьшим порядковым номером был направлен в сторону, противоположную глазу наблюдателя. Если старшинство трех остальных заместителей убывает по направлению часовой стрелки, то молекула имеет конфигурацию, обозначаемую буквой R (отлат, rectus – правый), а если старшинство заместителей убывает против часовой стрелки, конфигурацию обозначают буквой S (отлат. sinister–левый). Например, для молекулы бромйодхлорметана:

Рис 3,4. Определение конфигурации по R,S-системе для молекулы бромйодхлорметана

Рассмотрим определение старшинства заместителей и конфигурации для более сложных молекул на примере молочной кислоты (рис. 3.4). Уже по первому слою (8 O, б С, 1 Н, 6 С) становится понятно, что старшим заместителем является группа ОН, а младшим – водород. Для выяснения старшинства двух других заместителей СН^ и СООН с одинаковым атомным номером (6 С) по первому слою, необходимо рассмотреть второй слой. Сумма атомных номеров второго слоя СН 3 -группы= 1 + 1 + 1 = 3, а группы СООН = 8 + 8*2 = 24. Значит-СООН-группа старше группы –СН 3 Старшинство заместителей вокруг асимметрического атома углерода в молекуле молочной кислоты уменьшается в ряду: ОН > СООН > СН 3 > Н

Рис. 3.5. Определение конфигурации по R,S-системе для молочной кислоты

Рацематы. Смесь равных количеств энантиомеров оптически неактивна, ее называют рацемической смесью (рацематом). Рацематы отличаются от индивидуальных энантиомеров физическими свойствами, они могут иметь различную температуру плавления, растворимость; отличаются спектральными характеристиками.

На практике чаще приходится сталкиваться не с индивидуальными энантиомерами, а рацематами, которые образуются в результате химических реакций, протекающих с образованием хиральных молекул.

Для разделения рацематов на энантиомеры пользуются тремя методами:

1. Механический метод. В результате кристаллизации некоторых оптически активных соединений могут образовываться две формы кристаллов, похожих друг на друга как предмет и его зеркальное отображение. Их можно отделить под микроскопом препаративной иглой (механически).

2. Биохимический метод основан на том, что определенные виды микроорганизмов предпочитают одну из энантиомерных форм и поедают ее, вторая остается и может быть легко выделена.

3. Химический метод, В основе химического метода лежит перевод энантиомеров при помощи оптически активных реагентов в диа-стереомеры, которые уже отличаются друг от друга по физическим свойствам. Диастереомеры гораздо легче разделить.

Например, следует разделить рацемическую смесь двух кислот (А+ В), Для этого к смеси добавляют оптически активное основание (С). Между рацемической формой и оптически активным основанием протекает реакния

АС и ВС – это диастереомеры. Они обладают различной растворимостью и методом последовательной кристализации можно выделить два диастереомера отдельно.

Но так как АС и ВС образованы слабой органическом кислотой и основанием, то используют для их разложения минеральные кислоты.

Таким образом получают чистые энантиомеры А и В.

ГЕОМЕТРИЧЕСКАЯ ИЗОМЕРИЯ

Причиной возникновения геометрической изомерии является отсутствие свободного вращения вокруг σ-связи. Этот вид изомерии характерен для соединений, содержащих двойную связь, и для соединений алициклического ряда.

Геометрические изомеры это вещества, имеющие одинаковую молекулярную формулу, одинаковую последовательность связывания атомов в молекулах, но отличающиеся друг от друга различным расположением атомов или атомных групп в пространстве относительно плоскости двойной связи или плоскости цикла.

Причиной возникновения данного вида изомерии является невозможность свободного вращения вокруг двойной связи или σ-связей, образующих цикл.

Например, бутен-2 СН 3 –СН=СН–СН 3 может существовать в виде 2-х изомеров, которые различаются расположениями метильных групп в пространстве относительно плоскости двойной связи.

или 1,2-диметилциклопропан существует в виде двух изомеров, которые различаются расположением метильных групп в пространстве относительно плоскости цикла:

Для обозначения конфигурации геометрических изомеров используют цис-,транс-систему. Если одинаковые заместители расположены по одну сторону от плоскости двойной связи или цикла – конфигурацию обозначают цис-. если по разные стороны – транс-.

Для соединений, у которых при атомах углерода с двойной связью находятся различные заместители, применяют Z,E-систему обозначений.

Z,E-система является более обшей. Она применима к геометрическим изомерам с любым набором заместителей. В основе этой системы лежит старшинство заместителей, которое определяют у каждого атома углерода отдельно. Если старшие заместители из каждой пары расположены по одну сторону от двойной связи, конфигурация обозначается буквой Z(от нем. zusammen – вместе), если по разные стороны – буквой £(от нем. entgegen – напротив).

Так для 1-бром-1-хлорпропена возможно два изомера:

Старшим заместителем у одного атома углерода является метильная группа (заместители 1 Н и 6 СН 3). а у другого – атом брома (заместители 17 Сl и 35 Вr). В изомере 1 старшие заместители расположены по одну сторону от плоскости двойной связи, ему приписывают Z-конфигурацию, а изомеру II Е-конфигурацию (старшие заместители расположены по разные стороны плоскости двойной связи).

Геометрические изомеры имеют разные физические свойства (температуру плавления и кипения, растворимость и т. д.), спектральные характеристики и химические свойства. Такое различие в свойствах позволяет довольно легко установить их конфигурацию с помощью физических и химических методов.

Изомерия лигандов

Изомерия лигандов подразделяется на связевую (которая определяется разным типом координации одного и того же лиганда), и собственно изомерию лиганда.

Примерами связевой изомерии может служить существование нитро- и нитрито-комплексов кобальта(III) состава K 3 и K 3 , в которых координация лиганда NO 2 - осуществляется, соответственно, через атом азота или атом кислорода. Другой пример – координация тиоцианат-иона NCS - через атом азота или через атом серы, с образованием тиоцианато-N- или тиоцианато-S-комплексов.

Кроме того, лиганды сложного строения (например, аминокислоты) могут сами по себе образовывать изомеры, координация которых ведет к образованию комплексов одинакового состава с разными свойствами.

Геометрическая изомерия вызвана неодинаковым размещением лигандов во внутренней сфере относительно друг друга. Необходимым условием геометрической изомерии является наличие во внутренней координационной сфере не менее двух различных лигандов. Геометрическая изомерия проявляется преимущественно у комплексных соединений, имеющих октаэдрическое строение, строение плоского квадрата или квадратной пирамиды.

Комплексные соединения с тетраэдрическим, треугольным и линейным строением геометрических изомеров не имеют, поскольку места расположения лигандов двух разных видов вокруг центрального атома равноценны.

Комплексы, имеющие строение плоского квадрата, при наличии двух разных лигандов L ′ и L ′′ уже могут иметь два изомера (цис- и транс-):

Примером комплексного соединения, имеющего цис- и транс-изомеры, может служить дихлородиамминплатина(II):

Отметим, что комплексное соединение состава со структурой плоского квадрата не может иметь изомеров: положение лиганда L ′′ равновероятно в любом углу квадрата. Когда же появляется два разных лиганда, то уже возможно существование двух изомеров (цис- и транс-), отличающихся по свойствам. Так, цис-дихлородиамминплатина (II) – оранжево-желтые кристаллы, хорошо растворимые в воде, а транс-дихлородиамминплатина(II) – кристаллы бледно-желтого цвета, растворимость которых в воде несколько ниже, чем у цис-изомера.

С увеличением числа различных лигандов во внутренней сфере растет число геометрических изомеров. Для хлорида нитро(гидроксиламин)аммин(пиридин)платины(II) Cl получены все три изомера:

Октаэдрические комплексы могут иметь множество изомеров. Если в комплексном соединении такого рода все шесть лигандов одинаковы () или отличается от всех остальных только один (), то возможность различного расположения лигандов по отношению друг к другу отсутствует. Например, у октаэдрических соединений любое положение лиганда L ′′ по отношению к остальным пяти лигандам L ′ будет равноценным и поэтому изомеров здесь не должно быть:



Появление двух лигандов L ′′ в октаэдрических комплексных соединениях приведет к возможности существования двух геометрических изомеров . В этом случае появляются два различных способа расположения лигандов L ′′ друг относительно друга. Например, катион дигидроксотетраамминкобальта(III) + имеет два изомера:

При попытке найти какое-нибудь еще взаимное расположение лигандов H 3 N и OH - , которое отличалось бы от указанных выше, мы всегда придем к строению одного из уже приведенных.

При увеличении в комплексе числа лигандов, имеющих разный химический состав, число геометрических изомеров быстро растет. У соединений типа будет четыре изомера, а у соединений типа , содержащих шесть разных лигандов, число геометрических изомеров достигает 15. Подобные комплексные соединения пока еще мало изучены.

Геометрические изомеры существенно отличаются по физико-химическим свойствам, таким как цвет, растворимость, плотность, кристаллическая структура и т.д.

I. Изомерия (от греч. isos - равный) Берцелиус, 1830 г. Изомеры - это вещества, которые имеют одинаковую молекулярную формулу (одинаковый качественный и количественный состав), но отличаются последовательностью связывания атомов и (или) расположением их в пространстве и обладают разными свойствами.

БЕРЦЕЛИУС (Berzelius), Йёнс Якоб 1779 г. – 1848 г. Знаменитый шведский химик. С 1807 профессор медицины и фармации в Стокгольме.

С 2 Н 6 О диметиловый эфир Ткип= -24 С этиловый спирт Ткип= 78 С н-бутан Ткип= -0, 5 С С 4 Н 10 изобутан Ткип= -11, 7 С

Число изомеров в ряду алканов Название Формула Число Формула изомеров Название Число изомеров CH 4 метан 1 C 11 H 24 ундекан 159 C 2 H 6 этан 1 C 12 H 26 додекан 355 C 3 H 8 пропан 1 C 13 H 28 тридекан 802 C 4 H 10 бутан 2 C 14 H 30 тетрадекан 1 858 C 5 H 12 пентан 3 C 15 H 32 пентадекан 4 347 C 6 H 14 гексан 5 C 20 H 42 эйкозан C 7 H 16 гептан 9 C 25 H 52 пентакозан 36 797 588 C 8 H 18 октан 18 C 30 H 62 триаконтан 4 111 846 763 C 9 H 20 нонан 35 C 40 H 82 тетраконтан 62 491 178 805 831 C 10 H 22 декан 75 366 319

II. Гомология Группы органических соединений однотипной структуры с одинаковой функциональными группами, отличающиеся друг от друга по количеству групп -CH 2 - в углеродной цепи, составляют гомологический ряд. Гомологический ряд метана

III. Изологические ряды. l l Это ряды веществ, построенных из того же числа атомов углерода, но отличающиеся количественным составом атомов Н, т. е. каждый следующий член ряда содержит на 2 атома Н меньше, чем предыдущий: С 2 Н 6 этан С 2 Н 4 этилен С 2 Н 2 ацетилен

Структурная изомерия 3. Таутомерия (прототропная или динамическая изомерия) Таутомери я (от греч. ταύτίς - тот же самый и μέρος - мера) - явление сосуществования двух изомерных форм, находящихся в подвижном равновесии и способных самопроизвольно переходить друг в друга.

Src="https://present5.com/presentation/73124296_273676330/image-22.jpg" alt="Конформация >С ------- С Конформация >С ------- С

Геометрическая изомерия Геометрические изомеры – имеют одинаковый порядок (последовательность) связей в молекуле, но отличаются расположением атомов (групп) в пространстве относительно плоскости двойной связи или малого цикла.

Src="https://present5.com/presentation/73124296_273676330/image-24.jpg" alt="Цис- и транс-изомеры бутена-2 У каждого атома >C=C Цис- и транс-изомеры бутена-2 У каждого атома >C=C

«по сю и по ту сторону» реки Лейты Цислейтания – наименование земель австрийской короны; показано красным; 1867 -1918 г. Транслейтания - наименование земель венгерской короны; показано зелёным

E, Z-номенклатура 2 1 Е-1 -нитро-1 -бром-2 -хлорпентен 1 2 Z-1 -нитро-1 -бром-2 -хлорпентен 1. Используя правила Кана-Ингольда-Прелога, определяют относительное старшинство заместителей, связанных двойной связью и дают им номера по старшинству 1 или 2.

а) Атом с большим атомным номером является старшим относительно атома с меньшим номером. б) Если два атома являются изотопами, то преимущество имеет атом с большим массовым числом. 2. Если две наиболее старшие группы расположены по одну сторону от плоскости π-связи, то конфигурация заместителей обозначается символом Z. (от немецкого zusammen вместе) Если же эти группы находятся по разные стороны от плоскости π-связи, то конфигурацию обозначают символом Е (от немецкого entgegen напротив)

Луи Пастер (Louis Pasteur) (27. 12. 1822 -28. 09. 1895) Французский химик, величайший исследователь XIX столетия "Асимметрия - это то, что отличает органический мир от неорганического" (этот закон положил начало стереохимии). Асимметричные кристаллы обладают свойством вращать поляризованный свет.

Энантиомеры – пространственные изомеры, молекулы которых относятся между собой как предмет и несовместимое с ним зеркальное изображение. (от греч. enantios – противоположный).

Хиральность (англ. chirality, от греч. chéir - рука), понятие в химии, характеризующее свойство объекта быть несовместимым со своим отображением в идеальном плоском зеркале.

Фишер (Fischer) Эмиль Герман (9. 10. 1852, Эйскирхен, – 15. 7. 1919, Берлин), немецкий химик-органик и биохимик.

Проекции Фишера можно преобразовать: l l 1. чётное число перестановок заместителей не меняет формулу; 2. нечётное число перестановок заместителей приводит к формуле антипода (энантиомера); 3. запрещается поворот формулы на 90 или 270 , а также выведение формулы из этой плоскости (эти действия приводят к формуле антипода); 4. допускается поворот всей формулы в плоскости чертежа на 180 ;

Относительная конфигурация 1906 г. , по предложению М. А. Розанова L- и D-изомеры (от латинских слов laevus – левый и dexter – правый).

Система Кана–Ингольда–Прелога? Роберт Сидни Кан Ингольд Кристофер Прелог Владимир (9. 06. 1899 -15. 09. 1981) (28. 10. 1893– 8. 10. 1970) (23. 07. 1906– 07. 01. 1998) (Великобритания) (Швейцария)

Общее число оптических изомеров определяется формулой N = 2 n , n число центров хиральности. I III IV 2 -амино-3 -гидроксибутановая кислота

Винная кислота I III IV эритро трео Эпимеры – диастереомеры, отличающиеся конфигурацией только одного асимметрического центра

Рацемат (от латинского racemus – виноград). При смешивании эквимолярных количеств D - и L - стереизомеров образуются оптически неактивные смеси, получившие название рацемических S (от лат. sinister – левый) и R (лат. rectus – правый); рацемат обозначают символом RS. Расщепление рацемических смесей: 1. Механический метод (метод Пастера). 2. Микробиологический метод 3. Ферментативный метод. 4. Химический метод. Афинная хроматография

ВЗАИМОСВЯЗЬ СТЕРЕОХИМИЧЕСКОГО СТРОЕНИЯ С ПРОЯВЛЕНИЕМ БИОЛОГИЧЕСКОЙ АКТИВНОСТИ. Адреналин, эпинефрин ИЮПАК: 1 -(3, 4 -дигидроксифенил)-2 метиламиноэтанол - гормон мозгового слоя надпочечников животных и человека. Медиатор нервной системы холоднокровных. Из двух энантиомеров адреналина наибольшую фармакологическую активность проявляет R(-) адреналин.

ВЗАИМОСВЯЗЬ СТЕРЕОХИМИЧЕСКОГО СТРОЕНИЯ С ПРОЯВЛЕНИЕМ БИОЛОГИЧЕСКОЙ АКТИВНОСТИ. правовращающий изопропиладреналин (изадрин) проявляет в 800 раз более сильное бронхорасширяющее действие, чем его левовращающий энантиомер.

Диастереомеры – пространственные изомеры, молекулы которых НЕ относятся между собой как предмет и несовместимое с ним зеркальное отображение.

Конформационная изомерия Конформационная изомерия возникает как результат различного расположения частей одной и той же молекулы друг относительно друга, достигаемого при вращении этих частей вокруг простой С-С связи, соединяющей два атома.

(от лат. conformatio - форма, расположение), различные пространственные формы, принимаемые молекулами в результате свободного вращения отдельных фрагментов вокруг простых С-С связей.

69% 31% Ван-дер-Ваальсово напряжение – обусловлено силами отталкивания между валентно не связанными большими по объёму заместителями.