Блог о здоровом образе жизни. Грыжа позвоночника. Остеохондроз. Качество жизни. Красота и здоровье

Блог о здоровом образе жизни. Грыжа позвоночника. Остеохондроз. Качество жизни. Красота и здоровье

» » Методика определения канальцевой реабсорбции и секреции. Канальцевая реабсорбция – процесс обратного всасывания воды, аминокислот, ионов металла, глюкозы и других необходимых веществ из ультрафильтрата и возвращения их в кровь. Механизм работы различных о

Методика определения канальцевой реабсорбции и секреции. Канальцевая реабсорбция – процесс обратного всасывания воды, аминокислот, ионов металла, глюкозы и других необходимых веществ из ультрафильтрата и возвращения их в кровь. Механизм работы различных о

Канальцевая реабсорбция - это процесс всасывания клетками канальцев и транспорт в клетками жидкость и капилляры почек необходимых для организма веществ с первичной мочи.

В проксимальном канальцев реабсорбируется 80% веществ: вся глюкоза, все витамины, гормоны, микроэлементы; около 85% NaCl и Н2О, а также около 50% мочевины, которые поступают в капилляры канальцев и возвращаются в общую систему кровообращения.

Для процесса реабсорбции существенное значение имеет понятие о порог вывода. Порог вывода - это концентрация вещества в крови, при которой она не может быть реабсорбована полностью. Практически все биологически важные для организма вещества имеют порог вывода. Например выделение с мочой глюкозы (глюкозурия) наступает тогда, когда ее концентрация в крови превышает 10 ммоль / л. При глюкозурии растет осмотическое давление мочи, что приводит к увеличению количества мочи (полиурии). Существуют также непорогови вещества, которые выделяются при любой концентрации их в плазме и ультрафильтрате.

Механизм реабсорбции включая пути: сначала вещества попадают из фильтрата в клетки канальца, далее переносятся транспортными системами мембраны в межклеточное пространство; из межклеточных пространств диффундируют в высокопроницаемых биляканальцеви капилляры.

Транспортировка может быть активным и пассивным. Активная реабсорбция происходит при участии специальных ферментативных систем с затратой энергии против электрохимического градиента. Активно реабсорбируются фофаты, Na +. За счет активной реабсорбции возможно повторное всасывание из мочи в кровь веществ, даже в том случае, когда их концентрация в крови равна концентрации в жидкости канальцев или выше.

Сопряженное транспортировки глюкозы и аминокислот. Из полости канальцев в клетки вещества транспортируются с помощью переносчика, который обязательно дополнительно присоединяет Na +. Внутри клетки комплекс распадается. Концентрация глюкозы возрастает, и по концентрационным градиентом она покидает клетку.

Пассивная реабсорбция происходит без затрат энергии благодаря диффузии и осмоса. Большая роль в этом процессе принадлежит разницы гидростатического давления в капиллярах канальцев. За счет пассивной реабсорбции осуществляется повторное всасывание Н2О, хлоридов, мочевины.

Еще один механизм реабсорбции - пиноцитоз. Таким образом происходит всасывание белков.

В результате активного транспорта Na + и сопровождающих его анионов, осмотическое давление фильтрата снижается и в капилляры путем осмоса переходит эквивалентное количество воды. В результате в канальцы образуется фильтрат, изотонический крови капилляра. Этот фильтрат попадает в петлю Генле. Здесь проходит дальнейшая реабсорбция и концентрирование мочи за счет поворотно-противопоточному системы. Концентрирования мочи происходит следующим образом. В восходящей части петли нефрона, которая проходит в мозговом веществе, активно реабсорбируются Na, К, Са, Mg, Cl, мочевина, попадая в межклеточную жидкость, они повышают там осмотическое давление. Нисходящая часть петли Генле проходит в области высокого осмотического давления, поэтому с этой части петли выходит вода в межклеточное пространство по законам осмоса. Выход Н2О из нисходящей части петли приводит к тому, что моча становится более концентрированной относительно плазмы крови. Это способствует реабсорбции Na + в восходящей части петли, в свою очередь, вызывает выход Н2О в нисходящей части. Эти два процесса сопряжены, в результате моча теряет в петле Генле большое количество Н2О и Na +, и на выходе из петли моча снова становится изотонический.

Таким образом, роль петли Генле как протипоточного концентрирующего механизма определяют следующие факторы:

1) близко роташування восходящего и нисходящего колен;

2) проницаемость нисходящего колена для Н2О;

3) непроницаемость нисходящего колена для растворенных веществ;

4) проницаемость восходящего сегмента для Na +, K +, Са2 +, Mg2 +, СГ;

5) наличие механизмов активного транспорта в восходящем колене.

В дистальной части канальца происходит дальнейшая реабсорбция Na +, K +, Са2 +, Mg2 +, Н2О, которая зависит от концентрации этих веществ в крови - факультативная реабсорбция. Если их много, то они не реабсорбируются, если мало, то они возвращаются в кровь. Дистальный отдел регулирует и поддерживает постоянство концентрации ионов Na + и К + в организме. Проницаемость стенок дистальной части канальца для Н2О регулируется АДГ (АДГ) гипофиза (секреция которого зависит от осмотического давления крови). При повышении осмотического давления (то есть уменьшении количества Н2О), возбуждаются осморецепторы гипоталамуса, секркции АДГ увеличивается, увеличивается проницаемость стенок канальца для Н20 и она реабсорбируется в кровь, то есть задерживается в организме, и осмотическое давление уменьшается.

Аналогично регулируется реабсорбция воды в уборочной трубочке, которая также участвует в образовании гипертонической или гипотонической мочи, в зависимости от потребности организма в воде.

Величину канальцевой реабсорбации веществ определяют по разнице между количеством их в первичной и конечной мочи. Величину канальцевой реабсорбции воды (RH2O) определяют по разнице между скоростью клубочковой фильтрации (СИП) и количеством конечной мочи и выражают в процентах по отношению к СКФ. RH 2 O = Сип - V / Сип × 100%

В обычных условиях величина реабсорбции составляет 98-99%. Для оценки функции проксимальных канальцев определяют величину максимальной реабсорбции глюкозы (Tmg), увеличивая ее концентрацию в плазме крови до предела, что значительно превышает пороговую. Tmg = Сип × Pg - Ug × V , где Сип - СКФ; Рg - концентрация глюкозы в крови Ug - концентрация глюкозы в моче; V - количество выделенной за 1 мин мочи. Средняя величина Tmg у мужчин составляет 34,7 ммоль / л. В возрасте после 40 лет Tmg уменьшается на 7% за каждые 10 лет жизни.

В организм человека и выведение продуктов обмена осуществляет выделительная система человека. Работа органов выделительной системы человека имеет свои сформированные в процессе эволюции механизмы выведения продуктов обмена, которыми являются фильтрация, реабсорбция и секреция.

Выделительная система человека

Выведение продуктов обмена из организма осуществляют которые состоят из почек, мочеточников, мочевого пузыря и мочеиспускательного канала.

Почки расположены в забрюшинном пространстве в области поясничного отдела и имеют бобовидную форму.

Это парный орган, состоящий из коркового и мозгового вещества, лоханки, и покрыта она фиброзной оболочкой. Лоханка почки состоит из малой и большой чаши, и из нее выходит мочеточник, который доставляет мочу в мочевой пузырь и через мочеиспускательный канал конечная моча выводится из организма.

Почки участвуют в обменных процессах, и их роль в обеспечении водного баланса организма, поддержании кислотно-щелочного баланса являются основополагающей для полноценного существования человека.

Строение почки очень сложное и ее структурным элементом является нефрон.

Он имеет сложное строение и состоит из проксимального канала, тельца нефрона, петли Генле, дистального канала и собирательной трубочки, дающей начало мочеточникам. Реабсорбция в почках проходит через канальцы проксимальной, дистальной части и петли Генле.

Механизм реабсорбции

Молекулярные механизмы прохождения веществ в процессе реабсорбции это:

  • диффузия;
  • эндоцитоз;
  • пиноцитоз;
  • пассивный транспорт;
  • активный транспорт.

Особое значение имеет для реабсорбции активный и пассивный транспорт и направление реабсорбируемых веществ по электрохимическому градиенту и наличию переносчика для веществ, работа клеточных насосов и другие характеристики.

Веществ идет против электрохимического градиента с затратой энергии на ее реализацию и через специальные транспортные системы. Характер передвижения - трансцеллюлярный, который осуществляется переходом через апикальную мембрану и базолатеральную. Такими системами являются:

  1. Первично-активный транспорт, который осуществляется с помощью энергии от расщепления АТФ. Его используют ионы Na+, Ca+, K+, H+.
  2. Вторично-активный транспорт, проходит за счет разницы в концентрации ионов натрия в цитоплазме и в просвете канальцев, и эта разница объясняется выходом ионов натрия в межклеточную жидкость с затратой энергии расщепления АТФ. Его используют аминокислоты, глюкоза.

Проходит по градиентам: электрохимическому, осмотическому, концентрационному, и для его осуществления не требуется затрат энергии и образования переносчика. Вещества, которые используют его - это ионы Cl-. Движение веществ осуществляется парацеллюлярно. Это движение через мембрану клетки, которая расположена между двумя клетками. Характерными молекулярными механизмами являются диффузия, перенос с растворителем.

Процесс реабсорбции белка проходит внутри клеточной жидкости, и, после расщепления его на аминокислоты, они поступают в межклеточную жидкость, что происходит в результате пиноцитоза.

Виды реабсорбции

Реабсорбция - это процесс, проходящий в канальцах. И вещества, проходящие через канальцы, имеют разные переносчики и механизмы.

В сутки в почках формируется от 150 до 170 литров первичной мочи, которая проходит процесс реабсорбции и возвращается в организм. Вещества, имеющие высокодисперсные компоненты, не могут пройти через мембрану канальцев и в процессе реабсорбции поступают в кровь с другими веществами.

Проксимальная реабсорбция

В проксимальном отделе нефрона, который расположен в корковом веществе почки, реабсорбция проходит для глюкозы, натрия, воды, аминокислот, витаминов и белка.

Проксимальный каналец образован эпителиальными клетками, которые имеют апикальную мембрану и щеточную каемку, и обращена она в сторону просвета почечных канальцев. Базальная мембрана образует складки, формирующие базальный лабиринт, и через них первичная моча попадает в перитубулярные капилляры. Клетки между собой соединены плотно и образуют пространство, которое проходит на всем протяжении межклеточного пространства канальца, и называется он базолатеральным лабиринтом.

Реабсорбция натрия имеет сложный трехступенчатый этап, и он является переносчиком для других веществ.

Реабсорбция ионов, глюкозы и аминокислот в проксимальном канальце

Основные этапы реабсорбции натрия:

  1. Прохождение через апикальную мембрану. Это - этап пассивного транспорта натрия, через Na-каналы и Na-переносчиков. Ионы натрия проходят в клетку через мембранные гидрофильные белки, образующие Na-каналы.
  2. Поступление или прохождение через мембрану сопряжено с обменом Na+ на водород, например, или же с поступлением его как переносчика глюкозы, аминокислоты.
  3. Прохождение через базальную мембрану. Это - этап активного транспорта Na+, через Na+/K+ насосы с помощью фермента АТФ, который при расщеплении выделяет энергию. Натрий, реабсорбируясь в почечных канальцах, постоянно возвращается в обменные процессы и его концентрация в клетках проксимального канальца - низкая.

Реабсорбция глюкозы проходит по вторично-активному транспорту и ее поступление облегчено за счет переноса ее через Na-насос, и она полностью возвращается в обменные процессы в организме. Повышенная концентрация глюкозы не проходит полностью реабсорбцию в почках и выделяется с конечной мочой.

Реабсорбция аминокислот проходит аналогично глюкозе, но сложная организация аминокислот требует участия специальных переносчиков для каждой аминокислоты на менее 5-7 дополнительных.

Реабсорбция в петле Генле

Петля Генле проходит через и процесс реабсорбции в восходящей и нисходящей части ее для воды и ионов отличается.

Фильтрат, попадая в нисходящую часть петли, спускаясь по ней, отдает воду за счет разного градиента давления и насыщается ионами натрия и хлора. В этой части вода реабсорбируется, а для ионов она непроницаема. Восходящая часть непроницаема для воды и при прохождении через нее первичная моча разбавляется, тогда, как в нисходящей концентрируется.

Дистальная реабсорбция

Этот отдел нефрона расположен в корковом веществе почки. Его функция заключается в реабсорбции воды, которая собирается с первичной мочой и подвергает реабсорбции ионы натрия. Дистальная реабсорбция - это разведение первичной мочи и формирование из фильтрата мочи конечной.

Поступая в дистальный каналец, первичная моча в объеме 15% после реабсорбции в почечных канальцах, составляет 1% общего объема. Собираясь после этого в собирательной трубочке, она разбавляется, и формируется конечная моча.

Нейро-гуморальная регуляция реабсорбции

Реабсорбция в почках регулируется симпатической нервной системой и гормонами щитовидной железы, гипоталамо-гипофизарными и андрогенами.

Реабсорбция натрия, воды, глюкозы увеличивается при возбуждении симпатических и блуждающих нервов.

Дистальные канальца и собирательные трубочки осуществляют реабсорбцию воды в почках под влиянием антидиуретического гормона или вазопрессина, который при уменьшении воды в организме увеличивается в больших количествах, а также увеличивается проницаемость стенок канальцев.

Альдостерон увеличивает реабсорбцию кальция, хлора и воды, так же, как и атриопептид, который вырабатывается в правом предсердии. Угнетение реабсорбции натрия в проксимальном отделе нефрона идет при поступлении паратирина.

Активация реабсорбции натрия идет за счет гормонов:

  1. Вазопрессин.
  2. Глюкоган.
  3. Кальцитонином.
  4. Альдостероном.

Угнетение реабсорбции натрия идет при выработке гормонов:

  1. Простагландин и простагландин Е.
  2. Атриопептид.

Кора головного мозга осуществляет регуляцию выведения или затормаживания мочи.

Канальцевая реабсорбция воды осуществляется множеством гормонов, отвечающих за проницаемость мембран дистального отдела нефрона, регуляцию транспорта ее по канальцам и многое другое.

Значение реабсорбции

Практическое применение научных знаний о том, что такое реабсорбция - это в медицине позволило получить информационное подтверждение о работе выделительной системы организма и заглянуть во внутренние его механизмы. проходит очень сложные механизмы и влияние на него окружающей среды, генетических отклонений. И они не остаются незамеченными при возникновении проблем на их фоне. Одним словом, здоровье - это очень важно. Следите за ним и за всеми процессами, происходящими в организме.

Та же проба Реберга-Тареева предусматривает определение канальцевой реабсорбции.

КР=(СКФ - V мин)/СКФ×100%,

где КР - канальцевая реабсорбция; СКФ - скорость клубочковой фи­льтрации; V мин – минутный диурез.

В норме канальцевая реабсорбция составляет 98- 99%, однако при большой водной нагрузке даже у здоро­вых людей может уменьшаться до 94-92%. Снижение канальцевой реабсорбции рано наступает при пиелонефрите, гидронефрозе, поликистозе. В то же время при заболеваниях почек с преимущественным поражением клубочков канальцевая реабсорбция уменьшается позже, чем клубочковая фильтрация.

Проба Зимницкого дает возможность определить динамику количества отделяемой мочи и ее относительной плотности в течение суток.

В норме (при сохраненной способности почек к осмотическому разведению и концентрированию мочи)на протяжении суток отмечаются:

1. разница между максимальными и минимальными показателями должна составлять не менее 10 единиц (например, от 1006 до 1020 или от 1010 до 1026 и т. д.);

2. не менее чем двукратное преобладание дневного диуреза над ночным.

3. В молодом возрасте максимальная относительная плотность, характеризующая способность почек концентрировать мочу, должна быть не ниже 1,025, а у лиц старше 45–50 лет - не ниже 1,018.

4. Минимальная относительная плотность, у здорового человека должна быть ниже осмотической концентрации безбелковой плазмы, равной 1,010–1,012.

Причинами нарушения концентрационной способности почек являются:

  1. Уменьшение числа функционирующих нефронов у больных с хронической почечной недостаточностью (ХПН) .
  2. Воспалительный отек интерстициальной ткани мозгового слоя почек и утолщение стенок собирательных трубок (например, при хроническом пиелонефрите, тубулоинтерстициальном нефрите и др.
  3. Гемодинамический отек интерстициальной ткани почек, например при застойной недостаточности кровообращения.
  4. Несахарный диабет с угнетением секреции АДГ или взаимодействия АДГ с почечными рецепторами.
  5. Прием осмотических диуретиков (концентрированный раствор глюкозы, мочевина и др.).

Причинами нарушения способности почек к разведению являются:

  1. уменьшение потребления жидкости, погодные условия, способствующие усиленному потоотделению;
  2. патологические состояние, сопровождающиеся снижением почечной перфузии при сохраненной концентрационной способности почек (застойная сердечная недостаточность, начальные стадии острого гломерулонефрита) и др.;
  3. заболевания и синдромы, сопровождающиеся выраженной протеинурией (нефротический синдром);
  4. сахарный диабет, протекающий с выраженной глюкозурией;
  5. токсикоз беременных;
  6. состояния, сопровождающиеся внепочечными потерями воды (лихорадка, ожоговая болезнь, обильная рвота, диарея и.др.).

Изменения суточного диуреза.

У здорового человека в течение суток выводится примерно 70–80% выпитой жидкости. Увеличение диуреза больше 80% выпитой за сутки жидкости у больных с застойной недостаточностью кровообращения может свидетельствовать о начале схождения отеков, а уменьшение ниже 70% - об их нарастании.

Полиурия - это обильное отделение мочи (более 2000 мл за сутки). Полиурия может быть обусловлена многими причинами:

  1. Массивной водной нагрузкой (сопровождается гипостенурией).
  2. Применением осмотических диуретиков (маннитол, мочевина, 40% раствор глюкозы, альбумин и др.), такое состояние называется осмотическим диурезом .
  3. Приемом салуретиков (тиазидные производные, фуросемид, урегит), которые вызывают блокаду реабсорбции Na+ и вследствие этого угнетают пассивную реабсорбцию воды, также способствуя осмотическому диурезу.
  4. Тяжелыми нарушениями функции почек с резким уменьшением способности почек создавать в мозговом веществе достаточный концентрационный градиент (при начальных стадиях хронической почечной недостаточности).
  5. Другими заболеваниями, сопровождающимися нарушениями процесса концентрирования мочи:

а) несахарным диабетом, при котором снижение секреции АДГ приводит к резкому уменьшению факультативной реабсорбции воды в дистальных отделах канальцев и собирательных трубочках;

б) пиелонефритом с нарушением концентрационного градиента вследствие воспалительного поражения мозгового слоя почек и собирательных трубочек, что способствует уменьшению накопления осмотически активных веществ в мозговом веществе почек.

Олигурия – это уменьшение количества выделяемой за сутки мочи (менее 400-500 мл). Олигурия может быть обусловлена как внепочечными причинами (ограничение потребления жидкости, усиленное потоотделение, профузные поносы, неукротимая рвота, задержка жидкости в организме у больных с сердечной недостаточностью), так и нарушениями функции почек у пациентов с гломерулонефритом, пиелонефритом, уремией и т. п.).

Олигурия, обусловленная нарушениями функции почек , в большинстве случаев сочетается со снижением выделения с мочой осмотически активных веществ и уменьшением удельной плотности мочи.

Олигурия у пациентов с сохраненной функцией почек сопровождается отделением мочи с нормальной или повышенной удельной плотностью.

Анурия - это резкое уменьшение (до 100 мл в сутки и меньше) или полное прекращение выделения мочи. Различают два вида анурии.

  1. Секреторная анурия обусловлена выраженным нарушением клубочковой фильтрации, что может наблюдаться при шоке, острой кровопотере, уремии. В первых двух случаях нарушения клубочковой фильтрации связаны преимущественно с резким падением фильтрационного давления в клубочках, в последнем случае с гибелью более 70–80% нефронов.
  2. Экскреторная анурия (ишурия) связана с нарушением отделения мочи по мочевыводящим путям.

Никтурия - это равенство или даже преобладание ночного диуреза над дневным.

Таким образом, проба по Зимницкому является наиболее простым и необременительным для больного, но все же ориентировочным способом оценки функционального состояния почек. Зачастую изменения в пробе по Зимницкому являются наиболее ранними признаками почечной недостаточности.

Почки в человеческом теле выполняют ряд функций: это и регуляция объема крови и межклеточной жидкости, и удаление продуктов распада, и стабилизация кислотно-щелочного баланса, и регуляция водно-солевого равновесия и так далее. Все эти задачи решаются благодаря мочеобразованию. Канальцевая реабсорбция – один из этапов этого процесса.

Канальцевая реабсорбция

За сутки почки пропускают до 180 л первичной мочи. Эта жидкость из тела не выводится: так называемый фильтрат проходит сквозь канальцы, где практически вся жидкость всасывается, а необходимые для жизнедеятельности вещества – аминокислоты, микроэлементы, витамины, возвращаются в кровь. Продукты распада и обмена удаляются со вторичной мочой. Объем ее намного меньше – около 1,5 л за сутки.

Эффективность почки как органа во многом определяется эффективностью канальцевой реабсорбции. Чтобы представить себе механизм процесса, необходимо разобраться в строении – почечной единицы.

Строение нефрона

«Рабочая» клетка почки состоит из следующих частей.

  • Почечное тельце – клубочковая капсула, внутри расположены капилляры.
  • Проксимальный извитый каналец.
  • Петля Генле – складывается из нисходящей и восходящей части. Тонкая нисходящая располагается в мозговом веществе, изгибается под 180 градусов с тем, чтобы подняться в корковое вещество до уровня клубочка. Эта часть формирует восходящую тонкую и толстую части.
  • Дистальный извитый каналец.
  • Конечный отдел – короткий фрагмент, соединенный с собирательной трубкой.
  • Собирательная трубка – размещается в мозговом веществе, отводит вторичную мочу в почечную лоханку.

Общий принцип размещения таков: в корковом веществе размещаются почечные клубочки, проксимальный и дистальный канальцы, в мозговом – нисходящие и толстые восходящие части и собирательные трубки. Во внутреннем мозговом веществе остаются тонкие отделы, собирательные трубки.
На видео строение нефрона:

Механизм реабсорбции

Для осуществления канальцевой реабсорбции задействуются молекулярные механизмы, аналогичные перемещению молекул через плазматические мембраны: диффузия, эндоцитоз, пассивный и активный транспорт и так далее. Самый значимый – активный и пассивный транспорт.

Активный – проводится против электрохимического градиента. Для его реализации требуется энергия и специальные транспортные системы.

Рассматривают 2 вида активного транспорта:

  • Первично-активный – в ход идет энергия, выделяющаяся при расщеплении аденозинтрифосфорной кислоты. Таким образом перемещаются, например, ионы натрия, кальция, калия, водорода.
  • Вторично-активный – на перенос энергия не тратится. Движущей силой выступает разница в концентрации натрия в цитоплазме и просвете канальца.Переносчик обязательно включает в себя ион натрия. Таким способом через мембрану проходит глюкоза и аминокислоты. Разница в количестве натрия – меньше в цитоплазме, чем снаружи, объясняется выводом натрия в межклеточную жидкость с участием АТФ.

После преодоления мембраны комплекс расщепляется на переносчик – специальный белок, ион натрия и глюкозу. Переносчик возвращается в клетку, где готов присоединить следующий ион металла. Глюкоза же из межклеточной жидкости следует в капилляры и возвращается в кровоток. Реабсорбируется глюкоза только в проксимальном отделе, поскольку лишь здесь формируется требуемый переносчик.

Аминокислоты всасываются по аналогичной схеме. А вот процесс реабсорбции белка сложнее: белок поглощается путем пиноцитоза – захвата жидкости клеточной поверхностью, в клетке распадается на аминокислоты, а затем следует в межклеточную жидкость.

Пассивный транспорт – всасывание производится по электрохимическому градиенту и в поддержке не нуждается: например, всасывание ионов хлора в дистальном канальце. Возможно перемещение по концентрационному, электрохимическому, осмотическому градиентам.

На деле реабсорбция производится по схемам, включающим самые разные способы транспортировки. Причем в зависимости от участка нефрона абсорбироваться вещества могут по-разному или не поглощаться вовсе.

Например, вода усваивается в любом отделе нефрона, но разными методами:

  • около 40–45% воды всасывается в проксимальных канальцах по осмотическому механизму – вслед за ионами;
  • 25–28% воды поглощается в петле Генле по поворотно-протипоточному механизму;
  • в дистальных извитых канальцах поглощается до 25% воды. Причем если в двух предыдущих отделах поглощение воды производится вне зависимости от водной нагрузки, то в дистальных процесс регулируется: вода может выводиться со вторичной мочой или удерживаться.

Объем вторичной мочи достигает всего лишь 1% от первичного объема.
На видео процесс реабсорбции:

Движение реабсорбируемого вещества


Различают 2 метода перемещения реабсорбируемого вещества в межклеточную жидкость:

  • парацеллюрный – переход производится через одну мембрану между двумя плотно соединенными клетками. Это, например, диффузия, или перенос с растворителем, то есть, пассивный транспорт;
  • трансцеллюрный – «через клетку». Вещество преодолевает 2 мембраны: люминальную или апикальную, которая отделяет фильтрат в просвете канальца от клеточной цитоплазмы, и базолатеральную, выступающую барьером между интерстициальной жидкостью и цитоплазмой. Хотя бы один переход реализуется по механизму активного транспорта.

Виды

В разных отделах нефрона реализуются разные методы реабсорбции. Поэтому на практике часто используют разделение по особенностям работы:

  • проксимальный отдел – извитая часть проксимального канальца;
  • тонкий – части петли Генле: тонкая восходящая и нисходящая;
  • дистальный – дистальный извитый каналец, соединяющий и толстая восходящая часть петли Генле.

Проксимальная

Здесь поглощается до 2/3 воды, а также глюкоза, аминокислоты, белки, витамины, большое количество ионов кальция, калия, натрия, магния, хлора. Проксимальный каналец – основной поставщик глюкозы, аминокислот и белков в кровь, так что этот этап является обязательным и независим от нагрузки.

Схемы реабсорбции применяются разные, что определяется видом всасываемого вещества.

Глюкоза в проксимальном канальце поглощается практически полностью. Из просвета канальца в цитоплазму она следует через люминальную мембрану посредством контртранспорта. Это вторичный активный транспорт, для которого нужна энергия. Используется та, что выделяется при перемещении иона натрия по электрохимическому градиенту. Затем глюкоза проходит сквозь базолатеральную мембрану методом диффузии: глюкоза накапливается в клетке, что обеспечивает разницу в концентрации.

Энергия нужна при переходе сквозь люминальную мембрану, перенос через вторую мембрану энергетических затрат не требует. Соответственно, главным фактором поглощения глюкозы оказывается первично-активный транспорт натрия.

По такой же схеме реабсорбируются аминокислоты, сульфат, неорганический фосфат кальция, питательные органические вещества.

Низкомолекулярные белки оказываются в клетке посредством пиноцитоза и в клетке распадаются на аминокислоты и дипептиды. Этот механизм не обеспечивает 100% всасывания: часть белка остается в крови, а часть удаляется с мочой – до 20 г в сутки.

Слабые органические кислоты и слабые основания из-за низкой степени диссоциации реабсорбируются методом неионной диффузии. Вещества растворяются в липидном матриксе и поглощаются по концентрационному градиенту. Всасывание зависит от уровня pH: при его уменьшении диссоциация кислоты падает, а диссоциация оснований повышается. При высоком уровне pH увеличивается диссоциация кислот.

Эта особенность нашла применение при выводе ядовитых веществ: при отравлении в кровь вводят препараты, защелачивающие ее, что увеличивает степень диссоциации кислот и помогает вывести их с мочой.

Петля Генле

Если в проксимальном канальце ионы металлов и вода реабсорбируются практически в одинаковых долях, то в петле Генле всасывается в основном натрий и хлор. Воды же поглощается от 10 до 25%.

В петле Генле реализуется поворотно-протипоточный механизм, основанный на особенности расположения нисходящей и восходящей части. Нисходящая часть не поглощает натрий и хлор, но остается проницаемой для воды. Восходящая всасывает ионы, но для воды оказывается непроницаемой. В итоге всасывание хлорида натрия восходящей частью определяет степень поглощения воды нисходящей частью.

Первичный фильтрат попадает в начальную часть нисходящей петли, где осмотическое давление ниже по сравнению с давлением межклеточной жидкости. Моча спускается по петле, отдавая воду, но сохраняя ионы натрия и хлора.

Поскольку вода выводится, осмотическое давление в фильтрате растет и достигает максимального значения в поворотной точке. Затем моча следует по восходящему участку, сохраняя воду, но теряя ионы натрия и хлора. В дистальный каналец моча попадает гипоосмотическая – до 100–200 мосм/л.

По сути, в нисходящем отделе петли Генле моча концентрируется, а в восходящей – разводится.

На видео строение петли Гентле:

Дистальная

Дистальный каналец слабо пропускает воду, а органические вещества здесь вовсе не всасываются. В этом отделе производится дальнейшее разведение. В дистальный каналец попадает около 15% первичной мочи, а выводится около 1%.

По мере перемещения по дистальному канальцу она становится все более гиперосмотичной, поскольку здесь поглощаются в основном ионы и частично вода – не более 10%. Разведение продолжается в собирательных трубках, где и формируется конечная моча.

Особенностью работы этого сегмента является возможность регулировки процесса всасывания воды и ионов натрия. Для воды регулятором является антидиуретический гормон, а для натрия – альдостерон.

Норма

Для оценки функциональности почки используются различные параметры: биохимический состав крови и мочи, величина концентрационной способности, а также парциальные показатели. К последним и относят и показатели канальцевой реабсорбции.

Скорость клубочковой фильтрации – указывает на выделительные способности органа, это скорость фильтрации первичной мочи, не содержащей белок, через клубочковый фильтр.

Канальцевая реабсорбция указывает на всасывающие способности. Обе эти величины не постоянны и изменяются в течение суток.

Норма СКФ – 90–140 мл/мин. Наиболее высок ее показатель днем, снижается к вечеру, а утром находится на самом низком уровне. При физической нагрузке, потрясениях, почечной или сердечной недостаточности и других недугах СКФ падает. Может увеличиваться на начальных стадиях сахарного диабета и при гипертонии.

Канальцевая реабсорбция не измеряется непосредственно, а рассчитывается как разность между СКФ и минутным диурезом по формуле:

Р = (СКФ – Д) x 100 / СКФ, где,

  • СКФ – скорость клубочковой фильтрации;
  • Д – минутный диурез;
  • Р – канальцевая реабсорбция.

При снижении объема крови – операция, потеря крови, наблюдается повышение канальцевой реабсорбции в сторону роста. На фоне приема диуретиков, при некоторых почечных недугах – уменьшается.

Нормой для канальцевой реабсорбции является 95–99%. Отсюда и столь большая разница между объемом первичной мочи – до 180 л, и объемом вторичной – 1–1,5 л.

Для получения этих величин прибегают к пробе Реберга. С ее помощью вычисляют клиренс – коэффициент очищения эндогенного креатинина.По этому показателю вычисляют СКФ и величину канальцевой реабсорбции.

Пациент удерживается в лежачем положении на протяжении 1 часа. За это время собирается моча. Анализ проводится натощак.

Через полчаса из вены берут кровь.

Затем в моче и крови находят количество креатинина и вычисляют СКФ по формуле:

СКФ = М x Д / П, где

  • М – уровень креатинина в моче;
  • П – уровень вещества в плазме
  • Д – минутный объем мочи. Рассчитывается делением объема на время выделения.

По данным можно классифицировать степень повреждения почки:

  • Уменьшение скорости фильтрации до 40 мл/мин является признаком почечной недостаточности.
  • Уменьшение СКФ до 5–15 мл/мин свидетельствует о терминальной стадии недуга.
  • Уменьшение КР обычно следует после водной нагрузки.
  • Рост КР связан с уменьшением объема крови. Причиной может быть потеря крови, а также нефриты – при таком недуге повреждается клубочковый аппарат.

Нарушение канальцевой реабсорбции

Регуляция канальцевой реабсорбции

Кровообращение в почках выступает процессом относительно автономным. При изменениях АД от 90 до 190 мм. рт. ст. давление в почечных капиллярах удерживается на обычном уровне. Объясняется такая стабильность разницей в диаметре между приносящими и выносящими кровеносными сосудами.

Выделяют два наиболее значимых метода: миогенная ауторегуляция и гуморальная.

Миогенная – при росте АД стенки приносящих артериол сокращаются, то есть, в орган поступает меньший объем крови и давление падает. Сужение чаще всего вызывает ангиотензин II, таким же образом воздействуют тромбоксаны и лейкотриены. Сосудорасширяющими веществами выступают ацетилхолин, дофамин и так далее. В результате их действия нормализуется давление в клубочковых капиллярах с тем, чтобы удерживать нормальный уровень СКФ.

Гуморальная – то есть, при помощи гормонов. По сути, главным показателем канальцевой реабсорбции выступает уровень всасывания воды. Процесс этот можно разделить на 2 этапа: обязательный – тот, что проводится в проксимальных канальцах и независим от водной нагрузки, и зависимый – реализуется в дистальных канальцах и собирательных трубочках. Этот этап регулируется гормонами.

Главный среди них – вазопрессин, антидиуретический гормон. Он сохраняет воду, то есть, способствует задержке жидкости. Синтезируется гормон в ядрах гипоталамуса, перемещается в нейрогипофиз, а оттуда попадает в кровоток. В дистальных отделах имеются рецепторы к АДГ. Взаимодействие вазопрессина с рецепторами приводит к улучшению проницаемости мембран для воды, благодаря чему она поглощается лучше. При этом АДГ не только увеличивает проницаемость, но и определяет уровень проницаемости.

За счет разницы давлений в паренхиме и дистальном канальце вода из фильтрата остается в теле. Но на фоне низкой всасываемости ионов натрия диурез может оставаться высоким.

Всасывание ионов натрия регламентирует альдостерон – , а также натрийуретический гормон.

Альдестерон способствует канальцевой реабсорбции ионов и образуется при снижении уровня ионов натрия в плазме. Гормон регулирует создание всех требуемых для переноса натрия механизмов: канала апикальной мембраны, переносчика, составляющих натрий-калиевого насоса.

Особенно сильно его воздействие на участке собирательных трубочек. «Работает» гормон как в почках, так и в железах, и в ЖКТ, улучшая всасывание натрия. Также альдостерон регулирует чувствительность рецепторов к АДГ.

Альдостерон появляется и по другой причине. При снижении АД синтезируется ренин – вещество, контролирующее тонус сосудов. Под влиянием ренина аг-глобулин из крови трансформируется в ангиотензин I, а затем в ангиотензин II. Последний выступает сильнейшим сосудосуживающим веществом. Кроме того, он запускает выработку альдостерона, обуславливающего реабсорбцию ионов натрия, что вызывает задержку воды. Этот механизм – задержка воды и сужение сосудов, создает оптимальное АД и нормализует кровоток.

Натрийуретический гормон образуется в предсердии при его растяжении. Оказавшись в почках, вещество уменьшает реабсорбцию ионов натрия и воды. При этом количество воды, которое попадает во вторичную мочу увеличивается, что уменьшает общий объем крови, то есть, растяжение предсердий исчезает.

Кроме того, на уровень канальцевой реабсорбции оказывают воздействие и другие гормоны:

  • паратгормон – улучшает всасывание кальция;
  • тиреокальцийтонин – снижает уровень реабсорбции ионов этого металла;
  • адреналин – его влияние зависит от дозы: при малом количестве адреналин снижает СКФ фильтрацию, в большой дозе – здесь канальцевая реабсорбция повышена;
  • тироксин и соматропный гормон – усиливают диурез;
  • инсулин – улучшает поглощение ионов калия.

Механизм влияния разный. Так, пролактин повышает проницаемость клеточной мембраны для воды, а паратирин изменяет осмотический градиент интерстиция, тем самым влияя на осмотический транспорт воды.

Канальцевая реабсорбция – механизм, обуславливающий возвращение воды, микроэлементов и питательных веществ в кровь. Осуществляется возврат — реабсорбция, на всех участках нефрона, но по разным схемам.

Обратное всасывание различных веществ в канальцах обеспечивается активным и пассивным транспортом. Если вещество реабсорбируется против электрохимического и концентрационного градиентов, процесс называется активным транспортом. Различают два вида активного транспорта: первично-активный и вторично-активный. Первично-активным транспорт называется в том случае, когда происходит перенос вещества против электрохимического градиента за счет энергии клеточного метаболизма. Примером служит транспорт ионов Na + , который происходит при участии фермента Na + ,K + -АТФазы, использующей энергию АТФ. Вторично-активным называется перенос вещества против концентрационного градиента, но без затраты энергии клетки непосредственно на этот процесс; так реабсорбируются глюкоза, аминокислоты. Из просвета канальца эти органические вещества поступают в клетки проксимального канальца с помощью специального переносчика, который обязательно должен присоединить ион Na + . Этот комплекс (переносчик + органическое вещество + Na +) способствует перемещению вещества через мембрану щеточной каемки и его поступлению внутрь клетки. Движущей силой переноса этих веществ через апикальную плазматическую мембрану служит меньшая по сравнению с просветом канальца концентрация натрия в цитоплазме клетки. Градиент концентрации натрия обусловлен непрестанным активным выведением натрия из клетки во внеклеточную жидкость с помощью Na + ,К + -АТФазы, локализованной в латеральных и базальной мембранах клетки.

Реабсорбция воды, хлора и некоторых других ионов, мочевины осуществляется с помощью пассивного транспорта -по электрохимическому, концентрационному или осмотическому градиенту. Примером пассивного транспорта является реабсорбция в дистальном извитом канальце хлора по электрохимическому градиенту, создаваемому активным транспортом натрия. По осмотическому градиенту транспортируется вода, причем скорость ее всасывания зависит от осмотической проницаемости стенки канальца и разности концентрации осмотически активных веществ по обеим сторонам его стенки. В содержимом проксимального канальца вследствие всасывания воды и растворенных в ней веществ растет концентрация мочевины, небольшое количество которой по концентрационному градиенту реабсорбируется в кровь. Достижения в области молекулярной биологии позволили установить строение молекул ионных и водных каналов (аквапоринов) рецепторов, аутакоидов и гормонов и тем самым проникнуть в сущность некоторых клеточных механизмов, обеспечивающих транспорт веществ через стенку канальца. Различны свойства клеток разных отделов нефрона, неодинаковы свойства цитоплазматической мембраны в одной и той же клетке.

Клеточный механизм реабсорбции ионов рассмотрим на примере Na + . В проксимальном канальце нефрона всасывание Na + в кровь происходит в результате ряда процессов, один из которых - активный транспорт Na + из просвета канальца, другой - пассивная реабсорбция Na + вслед за активно транспортируемыми в кровь как ионами гидрокарбоната, так и Cl - . При введении одного микроэлектрода в просвет канальцев, а второго - в околоканальцевую жидкость было выявлено, что разность потенциалов между наружной и внутренней поверхностью стенки проксимального канальца оказалась очень небольшой - около 1,3 мВ, в области дистального канальца она может достигать - 60 мВ. Просвет обоих канальцев электроотрицателен, а в крови (следовательно, и во внеклеточной жидкости), концентрация Na + выше, чем в жидкости, находящейся в просвете этих канальцев, поэтому реабсорбция Na + осуществляется активно против градиента электрохимического потенциала. При этом из просвета канальца Na + входит в клетку по натриевому каналу или при участии переносчика. Внутренняя часть клетки заряжена отрицательно, и положительно заряженный Na + поступает в клетку по градиенту потенциала, движется в сторону базальной плазматической мембраны, через которую натриевым насосом выбрасывается в межклеточную жидкость; градиент потенциала на этой мембране достигает 70-90 мВ. Имеются вещества, которые могут влиять на отдельные элементы системы реабсорбции Na + . Так, натриевый канал в мембране клетки дистального канальца и собирательной трубки блокируется амилоридом и триамтереном, в результате чего Na + не может войти в канал. В клетках имеется несколько типов ионных насосов. Один из них представляет собой Na + ,К + -АТФазу. Этот фермент находится в базальной и латеральных мембранах клетки и обеспечивает транспорт Na + из клетки в кровь и поступление из крови в клетку К + . Фермент угнетается сердечными гликозидами, например строфантином, уабаином. В реабсорбции гидрокарбоната важная роль принадлежит ферменту карбоангидразе, ингибитором которого является ацетазоламид - он прекращает реабсорбцию гидрокарбоната, который экскретируется с мочой.

Фильтруемая глюкоза практически полностью реабсорбируется клетками проксимального канальца, и в норме за сутки с мочой выделяется незначительное ее количество (не более 130 мг). Процесс обратного всасывания глюкозы осуществляется против высокого концентрационного градиента и является вторично-активным. В апикальной (люминальной) мембране клетки глюкоза соединяется с переносчиком, который должен присоединить также Na + , после чего комплекс транспортируется через апикальную мембрану, т.е. в цитоплазму поступают глюкоза и Na + . Апикальная мембрана отличается высокой селективностью и односторонней проницаемостью и не пропускает ни глюкозу, ни Na + обратно из клетки в просвет канальца. Эти вещества движутся к основанию клетки по градиенту концентрации. Перенос глюкозы из клетки в кровь через базальную плазматическую мембрану носит характер облегченной диффузии, a Na + , как уже отмечалось выше, удаляется натриевым насосом, находящимся в этой мембране.

Аминокислоты почти полностью реабсорбируются клетками проксимального канальца. Имеется не менее 4 систем транспорта аминокислот из просвета канальца в кровь, осуществляющих реабсорбцию: нейтральных, двуосновных, дикарбоксильных аминокислот и иминокислот. Слабые кислоты и основания могут существовать в зависимости от рН среды в двух формах - неионизированной и ионизированной. Клеточные мембраны более проницаемы для неионизированных веществ. Если значение рН канальцевой жидкости сдвинуто в кислую сторону, то основания ионизируются, плохо всасываются и экскретируются с мочой. Процесс «неионной диффузии» влияет на выделение почками слабых оснований и кислот, барбитуратов и других лекарственных веществ.

Небольшое количество профильтровавшегося в клубочках белка реабсорбируется клетками проксимальных канальцев. Выделение белков с мочой в норме составляет не более 20-75 мг в сутки, а при заболеваниях почек оно может возрастать до 50 г в сутки. Увеличение выделения белков с мочой (протеинурия) может быть обусловлено нарушением их реабсорбции либо увеличением фильтрации.

В отличие от реабсорбции электролитов, глюкозы и аминокислот, которые, проникнув через апикальную мембрану, в неизмененном виде достигают базальной плазматической мембраны и транспортируются в кровь, реабсорбция белка обеспечивается принципиально иным механизмом. Белок попадает в клетку с помощью пиноцитоза. Молекулы профильтровавшегося белка адсорбируются на поверхности апикальной мембраны клетки, при этом мембрана участвует в образовании пиноцитозной вакуоли. Эта вакуоль движется в сторону базальной части клетки. В околоядерной области, где локализован пластинчатый комплекс (аппарат Гольджи), вакуоли могут сливаться с лизосомами, обладающими высокой активностью ряда ферментов. В лизосомах захваченные белки расщепляются и образовавшиеся аминокислоты, дипептиды удаляются в кровь через базальную плазматическую мембрану.

Определение величины реабсорбции в канальцах почки производится по разности между количеством вещества, профильтровавшегося в клубочках, и количеством вещества, выделенного с мочой. При вычислении относительной реабсорбции (% R) определяют долю вещества, подвергшуюся обратному всасыванию по отношению к количеству вещества, профильтровавшегося в клубочках.

Для оценки реабсорбционной способности клеток проксимальных канальцев важное значение имеет определение максимальной величины транспорта глюкозы. Эту величину измеряют при полном насыщении глюкозой системы ее канальцевого транспорта. Для этого вводят в кровь раствор глюкозы и тем самым повышают ее концентрацию в клубочковом фильтрате до тех пор, пока значительное количество глюкозы не начнет выделяться с мочой.